Some of the most exciting developments relate to the automation of equipment. Although this is not new, it has primarily been only in the largest mines that this has been possible, but research has been conducted which indicates that mines could operate more efficiently with large number of small trucks, which could open up the possibility of using autonomous trucks to more mines. Â
The two core challenges are safety and productivity. For the former, use or robotics can remove personnel from hazardous situations, such as through use of line-of-sight, teleremote or autonomous equipment. Â
The use of such equipment at both underground and surface mines is increasing with GlobalData estimating over 1,000 underground mining trucks and LHDs in use that operate autonomously or are tele-remote controlled, while there are over 1,600 surface haul trucks that are autonomous ready as of July this year. Indications from miners and OEMs suggest that reductions in accidents of 50% or more can result from the use of autonomous equipment.
 Secondly with regards to safety, robotic techniques often leave the mine’s structural integrity stronger than humans could. Inspection drones can fly directly into the site without overburdening the structure and continuous cutting vehicles can cut tunnels in regular rectangle shapes, which have better integrity than the tunnels produced by detonation. Â
With regards to productivity, the rising use of robotics is helping to drive down mining costs, which is critical given the opposing cost pressures arising from increasing scarcity of minerals, poorer grades, more remote deposits and a general trend towards more mining underground. Â
Examples of the improvements in productivity from robotics include, in the case of autonomous surface trucks, 15-30% improvements in productivity, 30% improved performance over those with operators and a 40% increase in machine utilization. And linked to improved productivity would be reduced fuel consumption and so less impact on the environment. Â
Vehicles can use pre-defined GPS courses and sensors to navigate haul roads and intersections automatically, perform much longer hours than humans, and require less staff. Robotic inspection technology can generate higher-quality data than human inspectors, and do so more quickly.Â
 Useful applications include real-time 3D mapping and thermal diagnostic capabilities that can ‘see’ issues undetectable to human eyes or normal cameras. Speed of detection has a significant impact on the eventual cost of the issue.Â
 Robotic maintenance equipment can repair issues with less downtime. For example, an idler on a belt can be changed without the conveyor belt needing to be stopped at all; a human fix would need twenty minutes of downtime. The robot lifts the belt and changes the idler while the belt is still running.Â
Underground rock cutting is more efficient with robotic techniques. The conventional technique involves personnel going underground, drilling holes, inserting explosives, evacuating, then detonating, then waiting eight hours for the smoke and debris to clear, then re-entering and repeating.
 Robotic continuous cutting methods cut rectangular bores, leaving flat floors, making it easier and faster for vehicles and personnel to move further into the mine and continue mining. Lastly, robotic mining techniques make resources at existing mines that were previously too difficult or expensive to mine accessible.Â